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A piecewise linear map with one discontinuity is studied by analytic means in 
the two-dimensional parameter space. When the slope of the map is less than 
unity, periodic orbits are present, and we give the precise symbolic dynamic 
classification of these. The localization of the periodic domains in parameter 
space is given by closed expressions. The winding number forms a devil's 
terrace, a two-dimensional function whose cross sections are complete devils's 
staircases. In such a cross section the complementary set to the periodic inter- 
vals is a Cantor set with dimension D = 0. 
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mode locking; fractal dimension. 

1. I N T R O D U C T I O N  

In  s t u d y i n g  the t r a n s i t i o n  f rom quas ipe r iod ic i ty  to chaos ,  (1 3) recent  

in teres t  has  focused on  so-cal led circle maps ,  o n e - d i m e n s i o n a l  m a p s  of the 

circle o n t o  itself. The  p r o t o t y p i c a l  m a p p i n g ,  r epresen ta t ive  for d iss ipat ive  
d y n a m i c a l  systems,  (4-6) is the sine m a p  

O , + l =  f (O, , ) (mod 1); f ( O ) = O + f ~ - ( K / 2 r c ) s i n ( 2 ~ c O )  (1) 

Several  phys ica l  sys tems can  be m o d e l e d  by  circle m a p s  of this kind.  (5'6) 

W h e n  the m a p  is inver t ib le  (K~< 1 for the sine map) ,  the var iab le  converges  
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to a quasiperiodic or periodic series. If the period length in the latter case is 
Q, we have 

f ~  = O, + P (2) 

where the left-hand side denotes Q times iteration o f f .  The ratio between 
the integers P and Q, w = P/Q,  is the winding number. 

By numerical methods one finds for the periodic orbits stability inter- 
vals on the 12 axis. These mode-locked intervals increase in size when the 
nonlinearity (K) is increased, forming mode-locked domains, also called 
Arnol'd tongues, in the (12, K) plane. When the circle map passes from 
invertibility to noninvertibility ( K =  1 for the sine map)  the measure of the 
quasiperiodic intervals shrinks to zero, with a fractal dimension, 
numerically determined to be D- -0 .87  when the critical map exhibits an 
inflection point of order three. (4-6) 

A different kind of circle map is useful for another class of physical 
systems, namely nonlinear systems with a limit cycle, driven by an external 
periodic force. In the fast-relaxation limit the Poincar6 map of a two- 
dimensional system is a circle map. (7,s) The characteristic feature of these 
maps is that in the critical case when the external force is able to displace 
the oscillator onto the unstable point within the limit cycle, the map will 
have a point of discontinuity. For a prototype model of this kind (s'9) the 
map has constant slope when this happens, and takes the form shown in 
Fig. 1: 

. ,  , ~ K ( x ,  + 2/~), 
x ,  +1 = J t x n / =  ~ K ( x ,  + 2fl - 2), 

f(X)K 1 
-1 ~ 

E 

r 

-1 

- 1  <~x.<  1 -2 /~  

1 - 2 / ~ < x . ~ <  1 f(x) 
-1 

-1 / 

(a) (b)  

(3) 

Fig. 1. (a) The piecewise linear map (3), shown for K= 0.5 and /~ = 0.3. (b) In the model of 
Ref. 8, the piecewise linear map emerges as the limit of a continuous periodic function on the 
circle ( - 1, 1 ). The piecewise linear map is a critical borderline case between (--) an invertible 
map and (--)  a noninvertible map. 
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where /~ represents the ratio between the frequency of the external force 
and the internal limit cycle frequency. 

In this paper we study the properties of the piecewise linear map (3) in 
the parameter space 0 ~</~ ~< 1 and 0 < K~< 1 (]KI > 1 always corresponds to 
chaotic behavior, while - I < K ~ < 0  always yields trivial fixed-point 
behavior). The motivation for our investigation is threefold: (1)It  is 
interesting to study a circle map that is not in the sine circle map class, 
(2) it is possible to obtain exact and explicit results, and (3) the results are 
essential for understanding the complicated general behavior of the 
prototype oscillator model of Ref. 8. 

The mapping (3) has a left branch L and a right branch R. Note that 
we have not yet defined the mapping function at the point of discontinuity, 
i.e., for 

x =  1 - 2 f l - v  (4) 

We could define f (z)  as K, corresponding to the right limit point of branch 
L (called l on Fig. la), or as - K ,  corresponding to the left limit point of 
branch R (denoted r on Fig. la). It will be relatively unimportant which 
definition one chooses; the only difference in the final results is that in one 
case the left boundary of a mode-locked domain will belong to the domain, 
while in the other case the right boundary will. 

Each periodic orbit can be characterized by a word, a finite sequence 
of L's and R's where each letter signifies whether the iterated point visits 
branch L or branch R of the map. In this symbolic dynamics the word 
length Q obviously equals the period of the orbit. Denoting the number of 
R's in the word by P, we may define the winding number as 

w=P/Q (5) 

From Fig. lb it is clear that this is equivalent to the usual definition of the 
winding number. 

The special orbits that visit the singular point x = z we call superstable. 
This paper is organized as follows. Section 2 is devoted to the sym- 

bolic dynamic classification. We show how the words for periodic orbits 
can be determined for a given winding number w. In Section 3 we deter- 
mine the boundaries of the mode-locking domains. The resulting structure 
of parameter space is shown in Fig. 2. For a given K the total measure of 
the mode-locking intervals is calculated in Section 4 and shown to be unity 
when K <  1. The devil's staircase ~1~ w(/3) is thus everywhere complete for 
all 0 < K <  1. In Section 5 the dimension of the complementary set of fl 
values is shown to be zero, in contrast to the nonzero fractal dimension for 
critical maps of the sine circle map type. 
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0 1 1 1 1  1 2 1 3 2 3  1 435  2 5 3  4 5 6 7  ! 
1 8 7 6 5  4 7 3 8 5 7  2 758 3 7 4 5 6 7 8  1 

Fig. 2. Arnol'd tongues for periods Q <~8. The fractions on top are the corresponding 
winding numbers w. Fixed-point behavior, w=0/1 and 1/1, is restricted to the two large 
triangular domains. 

2. S Y M B O L I C  D Y N A M I C S  

The word W of a periodic orbit is defined only up to cyclic per- 
mutations. To make it precise, we define W using the superstable orbit that 
starts at the endpoint r of branch R. Figure 3 shows the superstable orbit 
with W = RL3RL 2, corresponding to a winding number w--2/7. 

When /~ increases, the mapping function is displaced horizontally 
toward the left and it is clear from Fig. 3 that the periodic orbit will change 
continuously until it finally visits the endpoint l of the left branch. This 
superstable orbit corresponds to the maximum value of /3, i.e., the right 
endpoint of the periodic interval. Similarly, the superstable orbit starting 
from r corresponds to the minimum value of/3. The actual numerical values 
are calculated in the next section. The word W can be used to characterize 
the orbit throughout the interval. 
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Fig. 3. 

L 

The superstable orbit RL3RL 2. Here K= �89 and/3 = 161/508 = 0.316929. The numbers 
denote the arguments zk, Eq. (8), in the x(z~). 

For /~ < �89 x,, > z implies x , + l <  r, and the branch R will therefore 
never be visited two times in succession. Similarly, the branch L will not be 
visited two times in succession for /~ > �89 We may, however, restrict our- 
selves to /~<�89 since the mapping (3) is invariant under the symmetry 
operation / ~  1 - / ? ,  x ~ - x .  Consequently, for /?<�89 the word for a 
winding number P/Q takes the form 

W= RL/~RL t2"'" RLlP; 
P 

(l i + 1) = Q (6) 
i - - I  

To determine the word completely, we note the following two simple 
properties of the map: (i) Relative ordering is preserved in the sense that 
when two points x < x' on one branch (R or L) both map onto the same 
branch (not necessarily the original one), then f ( x ) < f ( x ' ) .  ( i i)When a 
point x on R and a point x' on L both map onto L, t hen f ( x )< f ( x ' ) .  

Ordering the Q points of the superstable orbit with winding number 
P/Q according to magnitude, 

x ( 0 ) < x ( 1 ) <  ---  <x(Q- I )  (7) 

the P orbit points on R have the highest values. From property (ii) above 
it follows that the P lowest values in (7) have the P points on R as 
preimages. Furthermore, the P lowest points map into the next lowest 
group of P orbit points on L, etc., until all Q - P  orbit points on L are 
exhausted and mapping onto R takes place. The starting point r maps into 
x(O), x(P), x(2P), etc., until branch R is reached; then the orbit switches 
back to L. 
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In short, the (k + 1)th image of r is located at X(Zk), where 

z k = kP(mod Q) (8) 

From the sequence Zo, zl,. . . ,  z o _  1, which obviously starts with z 0 = 0, the 
word W ( P / Q )  follows at once, since zn < zr, 1 implies switching from R to 
L. The first letter is always R. The (n + 1)th letter, n >~ 1, is R if z, < z n_ 1, 
otherwise it is L. 

As a simple example, take w = 2/7. The zk sequence equals 0, 2, 4, 6, 1, 
3, 5, and the word 

W(2/7) ~-- R L L L R L L  = R L 3 R L  2 (9) 

results (see Fig. 3). 
We note in passing that an alternative algorithm for obtaining the 

words uses continued fractions. Let 

P 1 

Q 1 
N~+ 

1 
N2 + - -  

N3 + "'" 

(10) 

be the continued fraction representation of the winding number, and let 
P~/Q1,  P2/Q2,  etc., be the successive approximants. Then the words 
corresponding to P/Q,  as well as to the approximants wi = P j Q ~ ,  are given 
by 

W1 = RLN~ 1 

W2 =W1LW~v2 I (1!) 

Wi = Wi N' 1 Wi 2 for odd i ~> 3 

Wi = Wi 2 w N i  1 fo r  e v e n  i > 4 

We will not use this representation, and omit the proof. (91 
For a given winding number, fi can increase until the orbit reaches the 

endpoint l of L. At this fi value, fi+, the orbit is again superstable, by 
definition. Instead of describing the orbit with the same word W as before, 
it will be useful to characterize it by a word W corresponding to using 1 as 
the starting point. It is interesting that W, trivially a cyclic permutation of 
W, is in fact identical to W, except for a transposition of the first two let- 
ters. That is, if 

W = R L X  
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with an unspecified sequence X of R's and L's, then 

I2~ = LRX 

To prove this, note that the orbit now is x(yo), x(yl),..., with yo=Q - 1, 
y l = P - 1 ,  y ~ = k P - 1  (rood Q) for k~>l. In other words, for k>O,  zk= 
Yk + 1, and z k + ~ - z k  = Yk +1-Yk .  The words will therefore be identical, 
barring the two first letters, which are trivially seen to be RL and LR, 
respectively. 

As will be shown in the next section, this result will be useful for deter- 
mining the widths of the Arnol'd tongues. 

3. T H E  M O D E - L O C K I N G  R E G I O N S  

The simplest periodic orbits are fixed points, Q = 1. As long as the 
branch L intersects the diagonal x,,+l = x,,, the periodic orbit with word L 
occurs, with winding number 0/1. This fixed-point solution occurs as long 
as K <  ~ = l - 2 f i .  Hence the region with winding number w=0/1  is given 
by 

0~<fl~<�89 - K )  (12) 

Similarly, the fixed point with word R is present when the branch R inter- 
sects the diagonal. This occurs when z ~ - K .  Thus, winding number 
w = 1/1 corresponds to the region 

�89 + K)<~fl <~ 1 (13) 

For intermediate values, �89 - K) < fi < �89 + K), longer periods exist. For 
example, periodic orbits RL (or LR) occur when the equation 

x = f ( f ( x ) )  

possesses a solution. And once again the critical values of fi, which deter- 
mine the boundaries of the domain with winding number �89 correspond to 
the two superstable orbits. The superstable orbit with word W = RL is 
determined by r =fL(fR(z)), or equivalently, 

f R  l ( fL  1(~)) = r (14) 

The inverse map of the two branches o f f ( x )  can be expressed as 

f ~ ' ( x ) = R ( x ) - 2 f i ,  f E ' ( x ) = L ( x ) - 2 f i  (15) 

with 
R ( x ) = K - l x + 2 ,  L ( x ) = K - I x  (16) 
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For the superstable orbit RL, (13) yields 

/3_ = �89 § K2)/(I + K) (17) 

and the superstable orbit LR is similarly found to occur for 

fl+ = �89 + 2 K -  K2)/(1 § K) (lg) 

The winding number w = �89 is therefore restricted to the region 

1(1 + K2)/(1 + K ) < f l < � 8 9  +2K-K2)~(1 +K) (19) 

In the general case it is clear that the equation for determining a 
superstable orbit XY. . .  Z is 

f x l ( f  ~l(... f z l ( , ) . . . ) )=z  (20) 

where the subscripts form the word of the orbit. Equation (14) is a special 
case. Now we insert (15), and use the following properties: 

R(a+b)=R(a)+K Ib, L (a+b)=L(a)+K ~b (21) 

Hence 
f ~ l ( ~ ) = B ( 1  2 f i ) -2 f i=B(1) -2K 1-2 f l  (22) 

f A~(f ~ ~(r) )= AB(1)-  2fiK 2-  2fiK- ' - 2fl (23) 

etc. We use the notation AB(1) rather than A(B(1)). Here A and B 
represent either R or L. The general structure of (20) is now clear. If the 
word of the superstable orbit is W, then (20) reduces to 

Q 

W ( 1 ) - 2 f i  ~ K - " = 1 - 2 / 3  (24) 
11=0 

or 
1 - K  

f i - 2 K  ~  (25) 

The function W in (25) is composed of the two functions (16) in accor- 
dance with the word structure. Q is the period. 

The commutator of the operators L and R is a number, 

L R - R L = 2 K  ~ - 2  (26) 

This makes it very easy to find the total width of the interval (/3 ,/3+) 
with winding number P/Q, 

1 - K  
d/3=/3+-/3 - 2 K  ~  (27) 
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Since the IV, W of the two superstable orbits are identical except for the 
transposition LR ~ RL of the two first letters, (26) yields immediately 

~B = (1 - x )  2 / ~ -  ~/(K Q - 1) (28) 

The width of an Arnol'd tongue is therefore independent of the winding 
number numerator P in our case. 

Equation (28) is all that is needed for a determination of the total 
measure of all periodic domains (see the next section). The remaining part 
of this section is devoted to a determination of explicit expressions for the 
left and right boundaries/? + (K) of the region with winding number P/Q. 

We have to evaluate W(1 ), using the functions (16), L(x)= K-~x, and 
R(x) = K ~x + 2. For the orbit (word) with the minimum number of R's, 
namely W =  RL e 1, we have trivially 

W(1)= K e + 2  (29) 

Other words with the same period length result when some of the L's are 
replaced by R's. By such replacements extra terms are added, since R(x)= 
L(x) + 2. According to the symbolic dynamic algorithm of Section 2, the 
(n + 1 )th letter is R if, and only if, 

[nP/Q] - [ ( n -  1)P/Q] = 1 (30) 

where Ix]  denotes the integer part of x. Adding up the contributions from 
these additional R's, we obtain 

Q 1 

w ( 1 ) = K  0 + 2 + 2  Z { [ n P / Q ] - [ ( n - 1 ) P / Q ] } K  ~ (31) 
/1 --  2 

Insertion of (31) into (25) yields an explicit expression for the left boun- 
dary /3 of the P/Q domain. The right boundary /~+ = / ~  +A/? follows 
then from (28). The result can be rewritten as 

1 1 1 K 1/2) (1-K)2Q~'FnP ] - - K + ~ ( p - I + K o  ~/2.~ K o .  1 
2 I _ K  u"  1 K o ,,"-'1 LQJ (32) 

4. T H E  M E A S U R E  OF  T H E  P E R I O D I C  R E G I O N S  

We have seen that the widths Aft of the periodic domains are the same 
for all winding numbers P/Q with a given period length Q. For a given 
slope K, the total measure M of all periodic domains is therefore 

M ( K ) = ( 1 - K )  2K ' ~ O(Q)/(K - Q - l )  (33) 
Q = I  
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Here ~b(Q), Euler's ~b-function, (11~ equals the number of positive integer less 
than Q and relative prime to Q. Given Q, ~b(Q) is the number of possible 
values for the numerator P of the winding number. 

The Liouville formula (ll) for PKI < 1, 

~b(Q) K ° =K(1 - K )  -2 (34) 
Q=I 

yields at once M =  1 for every K <  1. For K =  1 the map (3) is the simple 
shift map, and periodic orbits require fl rational. In conclusion, 

M(K)={10 forf°r K=K<ll (35) 

The winding number w locks in at every rational number P/Q, and at 
fixed K the function w(fl, K) thus forms a devil's staircase. (1°) By (35) the 
staircase is complete for K <  1. In the present case we have an explicit 
expression for the position of the steps, Eq. (32). As a function of both 
parameters the function w(fi, K) forms a "devil's terrace" (Fig. 4). 

Fig. 4. The devil's terrace. The winding number w = P/Q as function of the map parameters 
K and /3. (Only plateaus with Q ~< 8 are shown.) 
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The widths of the periodic regions--the Arnol'd tongues are zero at 
K =  1. When K is lowered, the widths increase linearly in the beginning: 

Aft= Q - I ( 1 - K ) +  O(1 - K )  2 (36) 

For Q > 1 the width of an Arnol'd tongue goes through a maximum A m at 
a value K =  Km, which is close to 1 when the period is large. In this way it 
is possible to have a total measure independent of K. It is easy to show that 

K m = I - c Q  I+O(Q 2) (37) 

and 
Am=(Q-2+O(Q 3) (38) 

where c = 1.5936... is the relevant root of c + 2e-c  = 2, and ~ = c 2 / ( e  c -  1 ) - -  

0.6476 .... 

5. D I M E N S I O N  OF T H E  C O M P L E M E N T A R Y  SET 

We have just shown that the periodic intervals take the whole measure 
on the /~ axis for K <  1. The complementary set of/3 values (not empty!) 
form a Cantor set, and it is interesting to assess its fractal dimension D. We 
want to compare with the corresponding dimension D = 0.87 of the sine 
circle map, and consequently use the same definition of D as Ref. 5. 

Let the resolution be defined by a minimum step length ~ in the devil's 
staircase, and let M(e) be the measure of the remaining set when all steps 
larger than e are taken out. Measured in units of the minimum step N(e) = 
M(e)/e, the small-e behavior, N(e)~ ~ D, or 

In N(e) 
D = lira D(e )=  lira - -  (39) 

~ o  ~ o  Ilnel 

defines a fractal dimension D. 
The minimum step length is connected to a maximum period G 

through (28), 
~=K-'(1-K)2/(K G _  1) (40) 

and the measure of the remaining set equals 

m ( e ) = K  l ( 1 - K ) 2  ~ ~b(Q)/(K Q-- I )  (41) 
Q - - G + 1  

Hence 

N(~) = ~ 1 - K  c 
Q=G+I 1 - - K  Q ~(Q) KQ-C (42) 
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Using that ~b(Q)~ 6/r-ZQ "in the mean, ''(1~) it would follow that 

N(e) 6K 
lim - (43) 

a ~  G rc2(1 - K )  

For our purpose it suffices to use the inequalities qi(Q)~< Q and 1 - - K a <  
1 -  K ~ in (42) to produce the inequality 

K K 
N(e) < G ~Z--~-+ (1 - K )  2 (44) 

to show that N(e) increases at most linearly with G. [It is also easy to show 
that N(e) >~ 1.] From (40) it follows that 

In e 
lim = In K (45) 

a~o~ G 

Equations (44) and (45) imply that asymptotically 

and consequently 

D(e)~<ln G tGln KI- I  (46) 

D = 0 (47) 

for K <  1. AlstrCm 112) reports that the completeness and the result that 
D = 0 have already been calculated by B. Scderberg (not published). The 
convergence of D(e) to D is extremely slow. As an example, numerical 
evaluation gives D(1.5x 10 11)=0.12 for K =  1. 

An interesting question is the universality of the result D = 0. A likely 
possibility is that any map x = f ( x )  with positive slope less than unity, 
except for one discontinuity, will be in the D = 0 universality class. 
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